

Blacktown Boys' High School 2024

HSC Trial Examination

Mathematics Extension 1

General Instructions

- Reading time 10 minutes
- Working time 2 hours
- Write using black pen
- Calculators approved by NESA may be used
- A reference sheet is provided for this paper
- All diagrams are not drawn to scale
- In Questions 11 14, show relevant mathematical reasoning and/or calculations

Total marks: 70

Total marks: Section I – 10 marks (pages 3 – 7)

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II – 60 marks (pages 8 – 15)

- Attempt Questions 11 14
- Allow about 1 hour and 45 minutes for this section

Assessor: X. Chirgwin

Student Name:

Teacher Name:

Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 2024 Higher School Certificate Examination.

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1–10.

Q1. Which of the following is the correct vector of \overrightarrow{BC} ?

- A. -8a 4b
- B. -8a + 4b
- C. 8a 4b
- D. 8a + 4b

Q2. A standard six-sided die is rolled 18 times.

Let \hat{p} be the proportion of the rolls with an outcome of 3.

Which of the following expressions is the probability that at most 12 of the rolls have an outcome of 3?

- A. $P\left(\hat{p} \le \frac{1}{6}\right)$
- B. $P\left(\hat{p} \le \frac{2}{3}\right)$
- C. $P\left(\hat{p} \ge \frac{1}{6}\right)$
- D. $P\left(\hat{p} \ge \frac{2}{3}\right)$

Q3. Which of the following could be the graph of the solution of the differential equation shown?

A.

В.

C.

D.

Q4. A graph has parametric equations $x = 2 \cos t$, $y = 2 - 4 \sin^2 t$. What is its Cartesian equation?

A.
$$y = x^2 - 2 \text{ for } -2 \le x \le 2$$

B.
$$y = x^2 - 2 \text{ for } -2 \le x \le 0$$

C.
$$y = x^2 + 2 \text{ for } -2 \le x \le 2$$

D.
$$y = x^2 + 2 \text{ for } -2 \le x \le 0$$

- Q5. If $\sin x = 0.28$ and $\frac{\pi}{2} \le x \le \pi$, evaluate $\tan 2x$.
 - A. $\frac{527}{336}$
 - B. $-\frac{527}{336}$
 - C. $\frac{336}{527}$
 - D. $-\frac{336}{527}$
- Q6. Mohammad hits the target on average 2 out of every 3 shots in archery competitions. During a competition he has 10 shots at the target. What is the probability that Mohammad hits the target exactly 9 times?
 - A. $10\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^9$
 - B. $\left(\frac{2}{3}\right)^9 \left(\frac{1}{3}\right)$
 - C. $10\left(\frac{2}{3}\right)^9$
 - D. $5\left(\frac{2}{3}\right)^{10}$
- Q7. What is the value of $\tan \alpha$ when the expression $4 \sin x 3 \cos x$ is written in the form $5 \sin(x \alpha)$?
 - A. $-\frac{3}{4}$
 - B. $\frac{3}{4}$
 - C. $-\frac{4}{3}$
 - D. $\frac{4}{3}$

- Q8. What is the range of the function $f(x) = \cos^{-1}(\tan x)$?
 - A. $[0, \pi]$
 - B. $(0,\pi)$
 - C. $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
 - D. $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
- Q9. The graph of the function y = f(x) is below.

Which of the following is a graph of $y = \frac{-1}{f(|x|)}$?

A.

В.

C.

D.

BBHS 2024 HSC Mathematics Extension 1 Trial Examination

Q10.	Given that $\underset{\sim}{a}$ and $\underset{\sim}{b}$ are two non-zer	o vectors, let c be the projection	of $\underset{\sim}{a}$ onto	$b \stackrel{b}{\sim}$
	What is the projection of $12a$ onto	3 <i>b</i> ?		

- A. 36*c*
- B. 12*c*
- C. 4*c*
- D. 3*c*

End of Section I

Section II

60 Marks

Attempt Questions 11–14

Allow about 1 hour and 45 minutes for this section

Answer each question on a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11–14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use the Question 11 Writing Booklet.

(a) For the vectors u = 5i + j and v = 2i - 3j, evaluate each of the following.

(i)
$$2u - 3v$$

(ii)
$$u \cdot v$$

(b) The polynomial $P(x) = 5x^3 - 2x + 20$ has roots α, β and γ . Evaluate:

(i)
$$\alpha\beta\gamma$$

(ii)
$$\alpha^2 + \beta^2 + \gamma^2$$

(c) Solve
$$\frac{10x}{1+3x} \le 3$$

(d) Show that
$$\frac{d}{dx} \left(\frac{\sin^{-1}(3x)}{3x} \right) = \frac{3x - \sin^{-1}(3x)\sqrt{1 - 9x^2}}{3x^2\sqrt{1 - 9x^2}}$$
 3

Question 11 continues on next page

Question 11 (continued)

(e) A recent census found that 55% of people used public transport.

A sample of 600 randomly selected Australians was surveyed.

Let \hat{p} be the sample proportion of surveyed people who were born overseas.

A normal distribution is to be used to approximate $P(\hat{p} \le 0.575)$.

- (i) Show that the variance of the random variable \hat{p} is $\frac{33}{80000}$.
- (ii) Use the standard normal distribution and the information on page 15 to approximate $P(\hat{p} \le 0.575)$, giving your answer correct to two decimal places.

End of Questions 11

Question 12 (15 marks) Use the Question 12 Writing Booklet.

(a) Evaluate
$$\int_0^{\frac{1}{5}} \frac{dx}{1 + 25x^2}$$
 2

(b) Evaluate
$$\int_{-1}^{4} \frac{t}{\sqrt{5+t}} dt$$
 by using the substitution $t = u - 5$.

- (c) Samirali turns on his radio 30 times a month on average. It can receive 20 radio stations. Every time he switches on the radio, it goes to a random station. What is the probability that it will be the radio station Samirali wants to listen to upon switching on the ratio at least twice in a month? Round your answer to 4 significant figures.
- (d) It is known that ${}^nC_r = {}^{n-1}C_{r-1} + {}^{n-1}C_r$ for all integers such that $1 \le r \le n-1$. (Do NOT prove this.)

Find ONE possible set of values for p and q such that

$${}^{2026}C_{1924} - {}^{2024}C_{100} - {}^{2024}C_{101} = {}^{p}C_{q}$$

(e) The vectors $u = {-5 \choose m}$ and $v = {3m-4 \choose 1-6m}$ are perpendicular.

What are the possible values of m?

(f) For all integers $n \ge 1$, use mathematical induction to prove that $\frac{3}{1 \times 2 \times 2} + \frac{4}{2 \times 3 \times 2^2} + \frac{5}{3 \times 4 \times 2^3} + \dots + \frac{n+2}{n(n+1) \times 2^n} = 1 - \frac{1}{(n+1) \times 2^n}$

End of Questions 12

Question 13 (15 marks) Use the Question 13 Writing Booklet.

- (a) (i) By expanding the left-hand side, show that $\sin(8x + 5x) + \sin(8x 5x) = 2\sin 8x \cos 5x$
 - (ii) Hence find $\int \sin 8x \cos 5x \, dx$.
- (b) The arc of the curve $y = \frac{1}{2}(1 + \sin x)$ between $x = -\frac{\pi}{2}$ and $x = \frac{\pi}{2}$ is rotated about the *x*-axis. Find the volume of the solid formed.
- (c) ABCD is a parallelogram where $\overrightarrow{DA} = 12\boldsymbol{a} + 20\boldsymbol{b}$ and $\overrightarrow{DC} = 8\boldsymbol{a} + 4\boldsymbol{b}$. X lies on the line \overrightarrow{AB} such that $\overrightarrow{AX} : \overrightarrow{XB} = 1 : 3$. M is the midpoint of \overrightarrow{DB} . \overrightarrow{CE} is an extension of \overrightarrow{BC} . Y lies on the line \overrightarrow{CE} such that $2\overrightarrow{CY} = -\overrightarrow{DA}$.

- (i) Find \overrightarrow{XM} in terms of \boldsymbol{a} and \boldsymbol{b} .
- (ii) Prove that X, M and Y are collinear and find k if $\overrightarrow{XM} = k\overrightarrow{MY}$.

Question 13 continues on next page

Question 13 (continued)

(d) (i) Show that
$$\frac{x+2}{4-x^2} = \frac{1}{2-x}$$

(ii) Find the particular solution to the differential equation 3

$$2(4-x^2)\frac{dy}{dx} = y(x+2)$$

that passes through the point (1, 2), give the answer in the form

$$y = f(x)$$
.

End of Questions 13

Question 14 (15 marks) Use the Question 14 Writing Booklet.

(a) The diagram below shows the graph of the function y = f(x).

3

Sketch
$$y = \frac{1}{\sqrt{f(x)}}$$

(b) The rate of change of the number of people entering an arena is modelled by $\frac{dN}{dt} = kN\left(1 - \frac{N}{5000}\right), \text{ where } k \text{ is a constant and } N \text{ is the number of people}$ after t minutes. There are 200 people in the arena initially and the capacity of the arena is 5000 people. At a certain time, the number of people in the arena is 1000 and is increasing at the rate of 500 people per minute.

(i) Show that
$$k = 0.625$$
.

(ii) Show that
$$\frac{5000}{N(5000 - N)} = \frac{1}{N} + \frac{1}{5000 - N}$$

- (iii) Find the number of people in the arena after 6 minutes.
- (iv) How long will it take for the arena to be 90% full? Round to the nearest second.

Question 14 continues on next page

Question 14 (continued)

- (c) Given that $\sin^{-1} x$, $\cos^{-1} x$ and $\sin^{-1} (2 x)$ have values for $0 \le x \le \frac{\pi}{2}$.
 - (i) Show that $\sin(\sin^{-1} x \cos^{-1} x) = 2x^2 1$.
 - (ii) Hence solve the equation $\sin^{-1} x \cos^{-1} x = \sin^{-1} (2 x)$.

End of Paper

	2024 Mathematics Extension 1 AT4 Trial Solut	ions
Section 1		
Q1	$ \begin{array}{c} \mathbf{C} \\ \overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AD} + \overrightarrow{DC} \\ \overrightarrow{BC} = -14b + 8a + 10b \\ \overrightarrow{BC} = 8a - 4b \end{array} $	1 Mark
Q2	Having 12 out of 18 rolls be an outcome of 3 corresponding to a \hat{p} value of $\frac{12}{18} = \frac{2}{3}$ Since "at most" that proportion is desired, then probability is $P\left(\hat{p} \leq \frac{2}{3}\right)$	1 Mark
Q3	С	1 Mark
Q4	A $x = 2\cos t, -2 \le x \le 2$ $x^2 = 4\cos^2 t$ $y = 2 - 4\sin^2 t$ $4\sin^2 t = 2 - y$ $\sin^2 t + \cos^2 t = 1$ $4\sin^2 t + 4\cos^2 t = 4$ $2 - y + x^2 = 4$ $y = x^2 - 2$	1 Mark
Q5	$\sin x = \frac{7}{25}, \frac{\pi}{2} \le x \le \pi$ $\tan x = -\frac{7}{24}$ $\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$ $\tan 2x = \frac{2 \times \left(-\frac{7}{24}\right)}{1 - \left(-\frac{7}{24}\right)^2}$ $\tan 2x = -\frac{336}{527}$	1 Mark
Q6	$ \begin{array}{c} \mathbf{D} \\ ^{10}C_9 \left(\frac{2}{3}\right)^9 \left(\frac{1}{3}\right)^1 = 5 \times \left(\frac{2}{3}\right)^{10} \end{array} $	1 Mark
Q7	$ \mathbf{B} $ $ 5\sin(x - \alpha) = 5\sin x \cos \alpha - 5\cos x \sin \alpha $ $ 5\cos \alpha = 4 \dots (1) $ $ 5\sin \alpha = 3 \dots (2) $ $ (2) \div (1) $ $ \tan \alpha = \frac{3}{4} $	1 Mark
Q8		1 Mark

Q9	$\frac{\mathbf{D}}{y = \frac{-1}{f(x)}}$ Take the graph where x is positive and reflect it along the y -axis. Then take the reciprocal of this graph, generating vertical asymptotes at $x = \pm 1, \pm 2$, and y -intercept becomes $\frac{1}{2}$. Then reflect the resulting graph along the x -axis, and y -intecept becomes $-\frac{1}{2}$.	1 Mark
Q10	$proj_{(3\underline{b})} \left(12\underline{a}\right) = \frac{\left(12\underline{a}\right) \cdot \left(3\underline{b}\right)}{\left 3\underline{b}\right ^{2}} \left(3\underline{b}\right)$ $proj_{(3\underline{b})} \left(12\underline{a}\right) = \frac{12\left(\underline{a} \cdot \underline{b}\right)}{\left \underline{b}\right ^{2}} \left(\underline{b}\right)$ $proj_{(3\underline{b})} \left(12\underline{a}\right) = 12proj_{(\underline{b})} \left(\underline{a}\right)$ $proj_{(3\underline{b})} \left(12\underline{a}\right) = 12\underline{c}$	1 Mark

Section 2		
Q11ai	2u - 3v	1 Mark
	$= 2\left(5\frac{i}{i} + j\right) - 3\left(2\frac{i}{i} - 3j\right)$	Correct solution
	= 10i + 2j - 6i + 9j $= 4i + 11j$	
	~	
Q11aii	$\left(5i+j\right)\cdot\left(2i-3j\right)$	1 Mark
	$\begin{vmatrix} (-2 + 3) & (-2 - 3) \\ = 5 \times 2 + 1 \times -3 \end{vmatrix}$	Correct solution
	$= 3 \times 2 + 1 \times -3$ $= 7$	
Q11bi	$P(x) = 5x^3 - 2x + 20$	1 Mark
	$\alpha\beta\gamma = -\frac{d}{a} = -\frac{20}{5}$	Correct solution
	$\alpha \beta \gamma = -4$	
Q11bii	$\alpha^2 + \beta^2 + \gamma^2$	2 Marks
	$=(\alpha+\beta+\gamma)^2-2(\alpha\beta+\beta\gamma+\alpha\gamma)$	Correct solution
	$= (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \alpha\gamma)$ $= 0 - 2 \times -\frac{2}{5}$	1 Mante
	4	1 Mark Makes significant
	$=\frac{1}{5}$	progress
		, 0
Q11c	$\frac{10x}{1+3x} \le 3, x \ne -\frac{1}{3}$	3 Marks
	$\begin{vmatrix} 1+3x - 3 & 3 \\ 10x(1+3x) \le 3(1+3x)^2 \end{vmatrix}$	Correct solution
	$10x(1+3x) \le 3(1+3x)$ $10x(1+3x) - 3(1+3x)^2 \le 0$	2 Marks
	$(1+3x)[10x-3(1+3x)] \le 0$	Makes significant
	$(1+3x)(x-3) \le 0$	progress and
	Skatch the graph of $y = (1 + 2y)(y + 2)$	identifies $3, -\frac{1}{3}$
	Sketch the graph of $y = (1 + 3x)(x - 3)$	are the two key
	<u></u>	values
	$-\frac{1}{3}$ 3	1 Mark
		Multiplies both
	1	sides by the square
	$\left \therefore -\frac{1}{3} < x \le 3 \right $	of denominator
	3	
Q11d	$\frac{d}{dx}\left(\frac{\sin^{-1}(3x)}{3x}\right)$	3 Marks
	$\int dx \left(3x \right)$	Correct solution
	$3x \times \frac{3}{\sqrt{1-9x^2}} - 3\sin^{-1}(3x)$	2 Marks
	$=\frac{\sqrt{1-3x}}{9x^2}$	Make significant
	$-\frac{3(3x-\sin^{-1}(3x)\sqrt{1-9x^2})}{}$	progress
	$-{9x^2\sqrt{1-9x^2}}$	1 Mark
	$= \frac{3x - \sin^{-1}(3x)\sqrt{1 - 9x^2}}{1 + \sin^{-1}(3x)\sqrt{1 - 9x^2}}$	Differentiate
	$= \frac{3x \times \frac{3}{\sqrt{1 - 9x^2}} - 3\sin^{-1}(3x)}{9x^2}$ $= \frac{3(3x - \sin^{-1}(3x)\sqrt{1 - 9x^2})}{9x^2\sqrt{1 - 9x^2}}$ $= \frac{3x \times \frac{3}{\sqrt{1 - 9x^2}}}{3x^2\sqrt{1 - 9x^2}}$	$\sin^{-1}(3x)$
Q11ei	Let p be the probability of people who catch public transport	2 Marks
41101	p=0.55, $q=1-p=0.45$	Correct solution
	n = 600	
	$\sigma^2 = \frac{0.55 \times 0.45}{600}$	1 Mark
	$\sigma^2 = \frac{0.55 \times 0.45}{600}$	Obtains correct <i>p</i>
	$\sigma^2 = \frac{33}{80000}$	and q values

Q11eii	$P(\hat{p} \le 0.575) = P\left(Z \le \frac{0.575 - 0.55}{\sqrt{\frac{33}{80000}}}\right)$	2 Marks Correct solution
	$\sqrt{\frac{33}{80000}}$	1 Mark
	$P(\hat{p} \le 0.575) = P(Z \le 1.2309)$	Obtains the correct
	$P(\hat{p} \le 0.575) \approx P(Z \le 1.23)$	z-score
	$P(\hat{p} \le 0.575) \approx 0.8907$ $P(\hat{p} \le 0.575) = 0.89$ (2 dp)	
Q12a	$\int_0^{\frac{1}{5}} \frac{dx}{1 + 25x^2}$	2 Marks
	$\int_0^{\infty} \frac{1 + 25x^2}{1 + 25x^2}$	Correct solution
	$= \frac{1}{5} \int_0^{\frac{1}{5}} \frac{5dx}{1 + (5x)^2}$	1 Mark
	$-5\int_0^{1} 1 + (5x)^2$	Correct anti- derivative
	$= \frac{1}{5} [\tan^{-1}(5x)]_0^{\frac{1}{5}}$ $= \frac{1}{5} [\tan^{-1}(5 \times \frac{1}{5}) - \tan^{-1}(5 \times 0)]$	derivative
	$= \frac{1}{2} \left[\tan^{-1} \left(5 \times \frac{1}{2} \right) - \tan^{-1} (5 \times 0) \right]$	
	$\begin{bmatrix} 5 \begin{bmatrix} \tan (6 \times 5) & \tan (6 \times 6) \end{bmatrix} \\ 1 \begin{bmatrix} \pi & 1 \end{bmatrix}$	
	$=\frac{1}{5}\left[\frac{1}{4}-0\right]$	
	$= \frac{1}{5} \left[\frac{\pi}{4} - 0 \right]$ $= \frac{\pi}{20}$	
0425		2.845.01.5
Q12b	$I = \int_{-1}^{4} \frac{t}{\sqrt{5+t}} dt$	3 Marks Correct solution
	J-1 V 3 + t	
	t = u - 5	2 Marks Obtains correct
	dt = du	anti-derivative in
	t=4, u=9	terms of u
	t = -1, u = 4	1 Mark
	$\int_{-1}^{9} u - 5$	Obtains correct
	$I = \int_4^u \frac{1}{\sqrt{(5+u-5)}} du$	integrand in terms of u
	$I = \int_{4}^{9} \frac{u - 5}{\sqrt{(5 + u - 5)}} du$ $I = \int_{4}^{9} \frac{u - 5}{\sqrt{u}} du$	or u
	$I = \int_{4}^{9} \left(u^{\frac{1}{2}} - 5u^{-\frac{1}{2}} \right) du$	
	$I = \left[\frac{u^{\frac{3}{2}}}{\frac{3}{2}} - \frac{5u^{\frac{1}{2}}}{\frac{1}{2}}\right]_{4}^{9}$	
	$I = \left \frac{\omega}{3} - \frac{\omega}{1} \right $	
	$I = \left[\frac{2u\sqrt{u}}{3} - 10\sqrt{u} \right]^9$	
	14	
	$I = \left[\left(\frac{2 \times 9\sqrt{9}}{3} - 10\sqrt{9} \right) - \left(\frac{2 \times 4\sqrt{4}}{3} - 10\sqrt{4} \right) \right]$	
	$I = \left[(18 - 30) - \left(\frac{16}{3} - 20 \right) \right]$	
	$I = \frac{8}{3}$	
Q12c	The probability of the correct radio station is $\frac{1}{20}$	3 Marks
-		Correct solution
	$X \sim B\left(30, \frac{1}{20}\right)$	2 Marks
	$P(X \ge 2) = 1 - P(X \le 1)$	Makes significant
	$P(X \ge 2) = 1 - (P(X = 1) + P(X = 0))$	progress
_	•	

	$P(X \ge 2) = 1 - \left(\frac{30}{20}C_0 \left(\frac{1}{20}\right)^0 \left(\frac{19}{20}\right)^{30} + \frac{30}{20}C_1 \left(\frac{1}{20}\right)^1 \left(\frac{19}{20}\right)^{29}\right)$ $P(X \ge 2) = 0.446457 \dots$ $P(X \ge 2) = 0.4465 (4 \text{ sig fig})$	1 Mark Finds $P(X = 0)$ or $P(X = 1)$
Q12d		2 Marks Correct solution 1 Mark Combines two terms
Q12e	${\binom{-5}{m}} \cdot {\binom{3m-4}{1-6m}} = 0$ $-15m + 20 + m - 6m^2 = 0$ $-6m^2 - 14m + 20 = 0$ $3m^2 + 7m - 10 = 0$ $(3m+10)(m-1) = 0$ $m = -\frac{10}{3}, m = 1$	2 Marks Correct solution 1 Mark Makes significant progress
Q12f	$RTP: \frac{3}{1 \times 2 \times 2} + \frac{4}{2 \times 3 \times 2^{2}} + \frac{5}{3 \times 4 \times 2^{3}} + \dots + \frac{n+2}{n(n+1) \times 2^{n}}$ $= 1 - \frac{1}{(n+1) \times 2^{n}}$ 1. Prove statement is true for $n = 1$ $LHS = \frac{3}{1 \times 2 \times 2} = \frac{3}{4}$ $LHS = 1 - \frac{1}{(1+1) \times 2^{1}}$ $RHS = 1 - \frac{1}{4}$ $RHS = \frac{3}{4}$ $\therefore \text{ statement is true for } n = 1$ 2. Assume statement is true for $n = k$ (k is some positive integer) $\frac{3}{1 \times 2 \times 2} + \frac{4}{2 \times 3 \times 2^{2}} + \frac{5}{3 \times 4 \times 2^{3}} + \dots + \frac{k+2}{k(k+1) \times 2^{k}}$ $= 1 - \frac{1}{(k+1) \times 2^{k}}$ 3. Prove statement is true for $n = k + 1$ $\frac{3}{1 \times 2 \times 2} + \frac{4}{2 \times 3 \times 2^{2}} + \frac{5}{3 \times 4 \times 2^{3}} + \dots + \frac{k+2}{k(k+1) \times 2^{k}}$ $+ \frac{k+1+2}{(k+1)(k+1+1) \times 2^{k+1}} = 1 - \frac{1}{(k+1+1) \times 2^{k+1}}$ $\frac{3}{1 \times 2 \times 2} + \frac{4}{2 \times 3 \times 2^{2}} + \frac{5}{3 \times 4 \times 2^{3}} + \dots + \frac{k+2}{k(k+1) \times 2^{k}}$ $+ \frac{4}{(k+1)(k+1+1) \times 2^{k+1}} = 1 - \frac{1}{(k+2) \times 2^{k+1}}$ $+ \frac{k+3}{(k+1)(k+2) \times 2^{k+1}} = 1 - \frac{1}{(k+2) \times 2^{k+1}}$	3 Marks Correct solution 2 Marks Makes significant progress 1 Mark Establishes the base case

	$LHS = \frac{3}{1 \times 2 \times 2} + \frac{4}{2 \times 3 \times 2^{2}} + \frac{5}{3 \times 4 \times 2^{3}} + \dots + \frac{k+2}{k(k+1) \times 2^{k}}$	
	$LHS = 1 - \frac{k+3}{(k+1)(k+2) \times 2^{k+1}}$ $LHS = 1 - \frac{1}{(k+1) \times 2^k} + \frac{k+3}{(k+1)(k+2) \times 2^{k+1}}$	
	$LHS = 1 - \frac{1}{(k+1) \times 2^k} + \frac{1}{(k+1)(k+2) \times 2^{k+1}}$ $(2(k+2)) \qquad (k+3)$	
	$LHS = 1 - \left(\frac{2(k+1)(k+2) \times 2^{k+1}}{(k+1)(k+2) \times 2^{k+1}} - \frac{(k+3)}{(k+1)(k+2) \times 2^{k+1}}\right)$ $2k + 4 - k - 3$	
	$LHS = 1 - \frac{2k+4-k-3}{(k+1)(k+2) \times 2^{k+1}}$ $k+1$	
	$LHS = 1 - \frac{k+1}{(k+1)(k+2) \times 2^{k+1}}$ $LHS = 1 - \frac{1}{(k+2) \times 2^{k+1}}$	
	$LHS = 1 - \frac{1}{(k+2) \times 2^{k+1}}$ $LHS = RHS$	
	$ \therefore \frac{3}{1 \times 2 \times 2} + \frac{4}{2 \times 3 \times 2^2} + \frac{5}{3 \times 4 \times 2^3} + \dots + \frac{n+2}{n(n+1) \times 2^n} $	
	$=1-\frac{1}{(n+1)\times 2^n}$	
Q13ai	$\sin(8x + 5x) + \sin(8x - 5x)$	1 Mark
	$= \sin 8x \cos 5x + \cos 8x \sin 5x + \sin 8x \cos 5x - \cos 8x \sin 5x$ $= 2 \sin 8x \cos 5x$	Correct solution
Q13aii	$\int \sin 8x \cos 5x dx$	2 Marks Correct solution
	$= \frac{1}{2} \int (\sin(8x + 5x) + \sin(8x - 5x)) dx$	1 Mark
	$= \frac{1}{2} \int (\sin 13x + \sin 3x) dx$	Obtains $\frac{1}{2} \int (\sin 13x + \sin 3x) dx$
	$= \frac{1}{2} \times \left(-\frac{1}{13} \cos 13x - \frac{1}{3} \cos 3x \right) + C$	2 J
	$= -\frac{1}{26}\cos 13x - \frac{1}{6}\cos 3x + C$	
Q13b	$V = \pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{1}{2} (1 + \sin x) \right)^2 dx$	3 Marks Correct solution
	$V = \frac{\pi}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 + 2\sin x + \sin^2 x) dx$	2 Marks Correct anti-
	$V = \frac{\pi}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1 + 2\sin x + \frac{1}{2} (1 - \cos 2x) \right) dx$	derivative 1 Mark
	$V = \frac{\pi}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{3}{2} + 2\sin x - \frac{1}{2}\cos 2x \right) dx$	Finds $\frac{\pi}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 + 2\sin x + \sin^2 x) dx$
	$V = \frac{\pi}{4} \left[\frac{3}{2} x - 2 \cos x - \frac{1}{4} \sin 2x \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$	
	$V = \frac{\pi}{4} \left[\left(\frac{3}{2} \times \frac{\pi}{2} - 2 \cos \frac{\pi}{2} - \frac{1}{4} \sin \left(2 \times \frac{\pi}{2} \right) \right) $ $ \left(\frac{3}{2} \times \frac{\pi}{2} - \frac{1}{4} \sin \left(2 \times \frac{\pi}{2} \right) \right) $	
	$-\left(\frac{3}{2}\times -\frac{\pi}{2} - 2\cos\left(-\frac{\pi}{2}\right) - \frac{1}{4}\sin\left(2\times -\frac{\pi}{2}\right)\right)\right]$ $V = \frac{\pi}{4}\left[\left(\frac{3\pi}{4} - 0 - 0\right) - \left(-\frac{3\pi}{4} - 0\right)\right]$	
	$V = \frac{3\pi^2}{8} \text{ units}^3$	

Q13ci	WM WD DM	2 Marks
Q13CI	$\overrightarrow{XM} = \overrightarrow{XB} + \overrightarrow{BM}$ $\overrightarrow{XM} = 3 \xrightarrow{AB} 1 \xrightarrow{BB}$	Correct solution
	$XM = \frac{AB}{4} + \frac{BD}{2}$	
	$\overrightarrow{XM} = \frac{3}{4}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BD}$ $\overrightarrow{XM} = \frac{3}{4}\overrightarrow{DC} + \frac{1}{2}(\overrightarrow{BA} + \overrightarrow{AD})$	1 Mark
	$\overrightarrow{XM} = \frac{\frac{4}{3}}{\frac{3}{4}}(8\mathbf{a} + 4\mathbf{b}) + \frac{1}{2}(-8\mathbf{a} - 4\mathbf{b} - 12\mathbf{a} - 20\mathbf{b})$	Finds \overrightarrow{XB} or \overrightarrow{BM} in terms of \boldsymbol{a} and \boldsymbol{b}
	T 4	
	$\overrightarrow{XM} = (6a + 3b) + (-10a - 12b)$	
	$\overrightarrow{XM} = -4\boldsymbol{a} - 9\boldsymbol{b}$	
Q13cii	$\overrightarrow{MY} = \overrightarrow{MB} + \overrightarrow{BY}$	3 Marks
<u></u>	$\overline{MY} = \overline{MB} + \overline{BC} + \overline{CY}$	Correct solution
	$\overrightarrow{MY} = -\overrightarrow{BM} - \overrightarrow{CB} - \frac{1}{2}\overrightarrow{DA}$	2 Marks
	$\overrightarrow{MY} = (10\mathbf{a} + 12\mathbf{b}) - (12\mathbf{a} + 20\mathbf{b}) - \frac{1}{2}(12\mathbf{a} + 20\mathbf{b})$	Finds k or proves collinear
	$\overrightarrow{MY} = 10\boldsymbol{a} + 12\boldsymbol{b} - 12\boldsymbol{a} - 20\boldsymbol{b} - 6\boldsymbol{a} - 10\boldsymbol{b}$	Commean
	$\overrightarrow{MY} = -8a - 18b$	1 Mark
		Finds \overrightarrow{MY} or \overrightarrow{XY}
	$\overrightarrow{XY} = \overrightarrow{XB} + \overrightarrow{BY}$	
	$\overrightarrow{XY} = 6\mathbf{a} + 3\mathbf{b} - 12\mathbf{a} - 20\mathbf{b} - 6\mathbf{a} - 10\mathbf{b}$	
	$\overline{XY} = -12\boldsymbol{a} - 27\boldsymbol{b}$	
	$\overrightarrow{XY} = 3\overrightarrow{XM} = \frac{3}{2}\overrightarrow{MY}$	
	Since these vectors are scalar multiples of each other and M is a common	
	point, therefore X, M and Y are collinear. $k = \frac{1}{2}$	
	2	
Q13di	x+2	1 Mark
	$= \frac{x+2}{4-x^2} = \frac{x+2}{(2+x)(2-x)}$	Correct solution
	$=\frac{x+2}{(2+x)(2-x)}$	
	1	
	$=\frac{1}{2-x}$	
Q13dii	$2(4-x^2)\frac{dy}{dx} = y(x+2)$	3 Marks
		Correct solution
	$\int \frac{2}{y} dy = \int \frac{x+2}{4-x^2} dx$	2 Marks
	$\int \frac{2}{y} dy = \int \frac{1}{2-x} dx$	Obtains correct
	$\int \frac{1}{y} dy = \int \frac{1}{2-x} dx$	primitive
	$2\ln y = -\ln 2 - x + C_1$	1 Mark
	$2\ln y = -\ln 2 - x + C_1$ $\ln y = -\frac{1}{2}\ln 2 - x + C_2$	Separates the
	2 1 2 1	variables in the
	$\ln y = \ln\frac{1}{\sqrt{2-x}} + C_2$	differential equation, or
	$\ln y = \ln\frac{1}{\sqrt{2-x}} + C_2$ $y = Ae^{\ln\frac{1}{\sqrt{2-x}}}$	equivalent merit
	$y = \frac{A}{\sqrt{2 - x}}$	
	y - 1 y - 2	
	$\begin{bmatrix} x-1,y-2\\ A \end{bmatrix}$	
	$2 = \frac{A}{\sqrt{2-1}}$	
	A = 2	
	2	
	$\therefore y = \frac{2}{\sqrt{2-x}}$	

Q14a		3 Marks
Q14a	↑y	Correct solution
	(-3,1) (0,0.5) (7,1)	2 Marks Correct graph with most key features shown
	(-1;0)	1 Mark
		Identifies some
		features and one
	IN N	correct branch
Q14bi	$\begin{vmatrix} \frac{dN}{dt} = kN\left(1 - \frac{N}{5000}\right) \\ 500 = k \times 1000 \times \left(1 - \frac{1000}{5000}\right) \end{vmatrix}$	1 Mark Correct solution
	$500 = k \times 800$	
	$k = \frac{5}{8} = 0.625$	
Q14bii	1 1	1 Mark
	$\begin{bmatrix} \frac{1}{N} + \frac{1}{5000 - N} \\ 5000 - N + N \end{bmatrix}$	Correct solution
	$= \frac{3000 - N + N}{N(5000 - N)}$	
	1 5000	
	$=\frac{1}{N(5000-N)}$	
Q14biii	dN / N \	4 Marks
Q1 IOIII	$\frac{dt}{dt} = 0.625N\left(1 - \frac{t}{5000}\right)$	Correct solution
	$\frac{dN}{dt} = 0.625N \left(1 - \frac{N}{5000} \right)$ $\frac{dN}{dt} = 0.625N \left(\frac{5000 - N}{5000} \right)$	
	$dt \sim 5000$	3 Marks
	$\int 5000 dN = \int 0.635 dt$	Makes significant progress and
	$\int \frac{5000}{N(5000 - N)} dN = \int 0.625 dt$	rearranging the
	$\int \left(\frac{1}{N} + \frac{1}{5000 - N}\right) dN = \int 0.625 dt$	equation to find N
	$\ln N - \ln 5000 - N = 0.625t + C$	2 Marks
	$\frac{N}{5000 - N} = Ae^{0.625t}$	Integrate both
	$5000 - N^{-Re}$	sides correctly
	t = 0, N = 200	4 845
	$\frac{200}{200} = Ae^0$	1 Mark Separating the
	$\frac{200}{5000 - 200} = Ae^0$	variables in the
	$A = \frac{1}{24}$	differential
	$A = \frac{1}{24}$ $\frac{N}{5000 - N} = \frac{1}{24}e^{0.625t}$	equation
	$ \begin{vmatrix} 5000 - N & 24 \\ 24N = e^{0.625t}(5000 - N) \end{vmatrix} $	
	$24N + e^{0.625t}N = 5000e^{0.625t}$	
	$N(24 + e^{0.625t}) = 5000e^{0.625t}$	
	$N = \frac{5000e^{0.625t}}{24 + e^{0.625t}}$	
	24 + e ^{5,023t}	
	t = 6	
	$N = \frac{5000e^{0.625 \times 6}}{24 + e^{0.625 \times 6}}$	
	$ 24 + e^{0.625 \times 6} N = 3196.06 $	
	N = 3196	
	The number of people in the arena after 6 minutes is approximately 3196.	

Q14biv	$90\% \times 5000 = 4500$	1 Mark
	$4500 1_{0.625t}$	Correct solution
	$\frac{4500}{5000 - 4500} = \frac{1}{24}e^{0.625t}$	
	$9 = \frac{1}{24}e^{0.625t}$	
	24	
	$9 \times 24 = e^{0.625t}$	
	$\ln 216 = 0.625t$	
	$t = \frac{\ln 216}{0.625}$	
	0.625	
	$t = 8^{\circ}36'1.6''$	
	$t = 8 \min 36 s$ (nearest second)	
Q14ci	Let $\sin^{-1} x = \alpha$, $\cos^{-1} x = \beta$	3 Marks
Q1401		Correct solution
	$\sin \alpha = \frac{x}{1}, \cos \beta = \frac{x}{1}$	Correct solution
		2 Marks
	β	Makes significant
	x	progress
		progress
	α	1 Mark
	$\sqrt{1-x^2}$	Identifies
	·	$\sin \beta = \cos \alpha$
	$\sin(\sin^{-1}x - \cos^{-1}x)$	
	$=\sin(\alpha-\beta)$	$=\sqrt{1-x^2}$
	$= \sin \alpha \cos \beta - \sin \beta \cos \alpha$	
	$=\frac{x}{1} \times \frac{x}{1} - \frac{\sqrt{1-x^2}}{1} \times \frac{\sqrt{1-x^2}}{1}$	
	$=x^2-(1-x^2)$	
	$=2x^2-1$	
Q14cii	$\sin^{-1} x - \cos^{-1} x = \sin^{-1} (2 - x)$	2 Marks
Q14CII	$\sin^{-1} x - \cos^{-1} x = \sin^{-1} (2 - x)$ $\sin(\sin^{-1} x - \cos^{-1} x) = 2 - x$	
	$\begin{vmatrix} \sin(\sin^2 x - \cos^2 x) = 2 - x \\ 2x^2 - 1 = 2 - x \end{vmatrix}$	Correct solution
		1 Mark
	$ \begin{aligned} 2x^2 + x - 3 &= 0 \\ 2x^2 - 2x + 3x - 3 &= 0 \end{aligned} $	1 Mark
	$\begin{vmatrix} 2x^{2} - 2x + 3x - 3 &= 0 \\ 2x(x - 1) + 3(x - 1) &= 0 \end{vmatrix}$	Deduce
	(x-1) + 3(x-1) = 0 $ (x-1)(2x+3) = 0$	$2x^2 - 1 = 2 - x$
		and find both x
	$x = 1, x = -\frac{3}{2}$	values
	$0 \le x \le \frac{\pi}{2}$	
	$\therefore x = 1$ is the only solution.	